近日,陜西科技大學化學與化工學院黃文歡教授團隊在Advanced Functional Materials期刊發表題為“Ultra-Low 4.3 wt% Silicon Thermal Reducing Doped Porous Si@MoC as Highly Capable and Stable Li-Ion Battery Anode”的研究論文,博士生陳卓為論文的第一作者。
由于電動汽車和設備的能源需求嚴峻,開發高能量、長循環壽命的鋰離子電池具有重要意義。硅作為鋰電池的新一代負極材料,以其高達約4200 mAh g?1的理論比容量和豐富的自然資源而備受關注。然而,硅在充放電多孔過程中不可避免的劇烈體積膨脹(≈300%)不僅削弱了電極和集流體的接觸,還導致了不穩定的固體電解質間相(SEI)的形成。不可逆的容量退化和電池壽命的縮短被認為是阻礙其商業化的主要限制。
一般情況下,采用碳殼包覆硅納米顆粒的方式來減輕硅膨脹問題。然而,在電池循環過程中,電解質離子必須穿透碳殼,然后與硅反應,導致動力學效果不佳。碳基質也會存在不必要的結構變化。此外,高負載硅納米顆粒的聚集會導致硅的利用效率低,從而影響電池的長期性能。迄今為止,開發和設計高利用率的硅碳負極材料仍然是一個巨大的挑戰。
鑒于此,黃文歡教授團隊,采用ZnMo雙金屬雜化沸石咪唑酸鹽框架(HZIF-ZnMo),開發和設計了一種超低4.3 wt%的硅摻雜多孔MoC材料,并進一步探索了其在高容量鋰離子電池中的潛力(在0.2 A g?1下進行250次循環后,容量為976.6 mAh g?1)。研究表明,多孔MoC作為基底,不僅為鋰離子的快速擴散提供了連續的通道,還使超低含量的硅在多孔基體中高度均勻分布,有效誘導硅在循環過程中實現自身容量的最大利用,研究成果發表于學術期刊Advanced Functional Materials,題為“Ultra-Low 4.3 wt% Silicon Thermal Reducing Doped Porous Si@MoC as Highly Capable and Stable Li-Ion Battery Anode”
文章要點
要點一:利用HZIF-ZnMo合成多孔Si@MoC(p-Si@MoC)
首先,利用水熱法合成了HZIF-ZnMo。隨后,通過將TEOS涂覆在HZIFZnMo上制備SiO2@HZIF-ZnMo,通過將正硅酸乙酯包覆在HZIF-ZnMo上制備SiO2@HZIF-ZnMo,通過簡單的熱還原,構建了超低約4.3 wt%摻雜Si的MoC多孔結構。反應保留了ZnMo咪唑框架的多面體結構并促進Si在多孔MoC基體內的均勻分散。此外,為了研究Si和多孔結構在p-Si@MoC中的作用,我們還合成了多孔MoC(p-MoC)和非多孔MoC,并在后續的實驗中組裝成電池,進行比較。
圖1 多孔Si@MoC材料設計及合成
圖2 多孔Si@MoC的表征
通過X射線近邊吸收光譜(XANES)和擴展X射線吸收精細結構譜(EXAFS),驗證了Si摻雜在MoC基體中形成的Mo-Si鍵。通過密度泛函理論(DFT)的計算,揭示了多孔Si@MoC優異的電導率和電子傳遞能力。
要點二:超低含量摻雜有效地誘導Si在p-Si@MoC中最大容量利用率
作為鋰離子電池負極材料,p-Si@MoC展現出了極小的電極/電解質界面阻抗(Rs)和電荷轉移阻抗(Rct)。值得注意的是,優化后p-Si@MoC負極在250次循環后顯示976.6 mAh g-1的放電容量,而p-MoC在250次循環后的放電容量為800.6 mAh g-1。根據p-Si@MoC中Si的含量(4.3 wt%)計算出硅的理論容量為180.6 mAh g-1。因此,我們認為這種獨特的多孔結構可以最大限度地利用Si摻雜來提高容量,且Si的容量利用率可達97.5%。
為了進一步評估p-Si@MoC的循環穩定性,在1 A g?1的電流密度下進行500圈次循環后,p-Si@MoC的可逆容量保持在485.8 mAh g?1,庫侖效率(CE)為98.9%。相比之下,p-MoC和MoC在500次循環后的放電容量分別為385.1和249.6 mAh g?1。值得注意的是,p-Si@MoC負極的高放電容量歸因于硅的摻雜和基體的多孔結構。與最近報道的不同成分和結構的硅基負極材料相比,p-Si@MoC中硅的含量更低。更重要的是,p-Si@MoC具有優異的電化學性能,但仍可與其他硅基陽極相媲美。
圖3 多孔Si@MoC電池性能測試
要點三:p-Si@MoC材料促進鋰離子快速動力傳輸及原位儲鋰機制
p-Si@MoC材料引起具有的良好的孔結構和高度均勻分散的Si,使p-Si@MoC在重復鋰化/脫鋰的過程中仍保持優異的結構穩定性,電極表面薄且致密。MoC、p-MoC和p-Si@MoC電極在經歷150次循環前后的電化學阻抗也證明了p-Si@MoC具有優異的結構穩定性。對比循環前后多孔Si@MoC負極變化,膨脹率僅有11.6%。因其獨特的多孔結構,在整個過程中與硅保持著密切接觸,有效地吸收了循環過程中硅顆粒增加的體積,減輕體積膨脹。此外,對電化學動力學過程進行研究,p-Si@MoC負極較高的鋰離子擴散系數(6.44×10?7 cm2 s?1)證實了多孔MoC構建的提供豐富的孔隙和離子開放通道,有利于電解液的滲透和鋰離子的擴散。
原位XRD測試結果顯示,顯示了在放電和充電過程中多孔MoC基體變化(MoC + xLi+ + xe? → Mo + LixC,放電過程中的反應)和LixSi的形成與解離,與CV曲線一致,證實了電極在循環過程中電化學的高度可逆性。
圖4 多孔Si@MoC電極表面穩定性研究
圖5 多孔Si@MoC電極動力傳輸及原位儲鋰機制
文章鏈接
Ultra-Low 4.3 wt% Silicon Thermal Reducing Doped Porous Si@MoC as Highly Capable and Stable Li-Ion Battery Anode
Adv. Funct. Mater. 2024, 2314176
https://doi.org/10.1002/adfm.202314176
附:團隊近三年部分代表性論文:
[1] W. Huang*, S. Wang, X. Zhang, Y. Kang, H. Zhang*, N. Deng, Y. Liang, H. Pang*, Universal F4-modified Strategy on Metal Organic Framework to Chemical Stabilize PVDF-HFP as Quasi-Solid-State Electrolyte, Advanced Materials, 2023, 35(52), 202310147.
[2] Z. Chen, X. Lu, Y. Zhang,* Y. Kang, X. Jin,* X. Zhang, Y. Li, H. Wang,* and W. Huang*, Ultra-low 4.3 wt% silicon thermal reducing doped porous Si@MoC as highly capable and stable Li-ion battery anode, Advanced Functional Materials, 2024, DOI:10.1002/adfm.202314176.
[3] X. Zhang, Q. Su*, G. Du, B. Xu, S. Wang, Z. Chen, L. Wang, W. Huang*, H. Pang*, Stabilizing Solid-state Lithium Metal Batteries through In Situ Generated Janus-heterarchical LiF-rich SEI in Ionic Liquid Confined 3D MOF/Polymer Membranes, Angew Chem. Int. Ed., 2023, 62(39), 202304947.
[4] W. Huang, C. Su, C. Zhu, T. Bo, S. Zuo, W. Zhou, Y. Ren, Y. Zhang, J. Zhang, M. Rueping*, H. Zhang*, Isolated Electron Trap-Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production, Angew Chem., Int. Ed., 2023, 62 (25), 202304634.(VIP paper)
[5] W. Huang,* X. Zhang, J. Chen, Q. Qiu, Y. Kang, K. Pei, S. Zuo, and R. Che*, High-density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra-Light Graphited Carbon for Adsorbing Electromagnetic Wave, Advanced Science, 2023, 2303217.
[6] X. Zhang, W. Huang*, L. Yu, M. García-Melchor, D. Wang, L. Zhi* and H. Zhang* Enabling Heterogeneous Catalysis to Achieve Carbon Neutrality: Directional Catalytic Conversion of CO2 into Carboxylic Acids, Carbon Energy, 2023, e362.
[7] W. Huang, T. Bo, S. Zuo, Y. Wang, J. Chen, S. Ould‐Chikh, Y. Li, W. Zhou*, J. Zhang, H. Zhang*, Surface decorated Ni sites for superior photocatalytic hydrogen production, Susmat, 2022, 2(4) 466-475.
[8] C. Feng, Y. Ren, F. Razq, W. Huang*, H. Zhang*, An innovative and ingenious strategy to construct single-atom catalyst for photocatalytic methane conversion, Matter, 2022, 5, 3086–3111.
[9] M. Sun, W. Cao, P. Zhu, Z. Xiong, C. Chen, J. Shu*, W. Huang*, Fan Wu*, Thermally tailoring magnetic molecular sponges through self-propagating combustion to tune magnetic-dielectric synergy towards high-efficiency microwave absorption and Attenuation, Advanced Composites and Hybrid Materials, 2023, 6: 54.
[10] Y. Ren, W. Huang*, M.A. Alsuhami, H. Zhang, J. Ye*, Subsurface engineering for efficient photocatalytic water splitting, Chem Catalysis, 2023, 3(8), 100707.
[11] P. Li, Z. He, X. Li, W. Huang*, and X. Lu*, Fullerene-Intercalated Graphitic Carbon Nitride as a High-Performance Anode Material for Sodium Ion Batteries. Energy & Environmental Materials, 2022, 5: 608–616.
[12] W. Huang*, Q. Qiu, X. Yang, S. Zuo, J. Bai, H. Zhang*, K. Pei and R. Che*, Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption. Nano-Micro Letters, 2022, 14(1): 96.
[13] W. Huang*, W. Gao, S. Zuo, L. Zhang, K. Pei, P. Liu and R. Che*, and H. Zhang*, Hollow MoC/NC Sphere for Electromagnetic Wave Attenuation: Direct Observation of Interfacial Polarization on Nanoscale Hetero-interfaces. Journal of Materials Chemistry A, 2022, 10: 1290-1298.(雜志封面Outside Front Cover)(高被引論文)
[14] Y. Kang, J. Tang, J. Chen, M. Song, W. Wang, T. Liu, W. Huang*, “Appropriate dressing” non-fluorination strategy: Dopamine coating CuSiF6 framework derived F-rich SiC/CuF2@C electromagnetic wave absorber, Carbon, 2024, 218, 118690.
[15] W. Huang*, J. Chen, W. Gao, L. Wang, P. Liu*, Y. Zhang, Z. Yin, Y. Yang, “Host-Guest” crystalline Mo/Co-framework induced phase-conversion of MoCx in carbon hybrids for regulating absorption of electromagnetic wave, Carbon, 2022, 197: 129-140.
[16] W. Huang*, S. Wang, X. Yang, X. Zhang, Y. Zhang, K. Pei, R. Che*, Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption, Carbon, 2022, 195: 44-56.
[17] Y. Zhang, J. Chen, C. Su, K. Chen, H. Zhang, Y. Yang, W. Huang*, Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors, Nano Research, 2022, 15(10), 8983-8990.
[18] W. Huang*, X. Li, X. Yang*, H. Zhang, P. Liu, Y. Ma, and X. Lu, CeO2-embedded mesoporous CoS/MoS2 as highly efficient and robust oxygen evolution electrocatalyst. Chemical Engineering Journal, 2021, 420: 127595.
[19] Y. Li, X. Jin*, Y. Ma, L. Ma, J Liu, P. Zhu, Z. Deng, H. Zhou, W Chen, W. Huang*, Functional decoration on a regenerable bifunctional porous covalent organic framework probe for the rapid detection and adsorption of copper ions, Rare Metals, 10.1007/s12598-023-02476-w.
[20] Y. Zhang, J. Chen, F. Razq, C. Su, X. Hou, W. Huang*, and H. Zhang*, Polyoxometalate-incorporated host-guest framework derived layered double hydroxide composites for high-performance hybrid supercapacitor, Chinese Journal of Chemistry, 2023, 41, 75-82. (雜志封面Outside Front Cover)
[21] X. Yang, W. Gao, J. Chen, X. Lu, D. Yang, Y. Kang, Q. Liu, Y. Qing, and W. Huang*, Co-Ni Electromagnetic Coupling in Hollow Mo2C/NC Sphere for Enhancing Electromagnetic Wave Absorbing Performance, Chinese Journal of Chemistry, 2023, 41, 64-74.
[22] W. Huang*, X. Li, X. Yang*, X. Zhang, H. Wang, H. Wang, The recent progress and perspectives on the metal- and covalent- organic frameworks based solid-state electrolytes for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5 (9): 3593-3613.
新聞小貼士:
黃文歡,主要從事多氮唑雜化框架的設計合成,能源存貯及轉化、電磁波吸收屏蔽、固態電池關鍵材料的應用研究。入選“2023年度全球前2%頂尖科學家榜單”,陜西省特支計劃-青年拔尖人才、陜西省“科學家+工程師”創新團隊首席科學家、陜西省科技新星,近年來主持國家項目2項、省部級各類科研項目11項、教學項目4項,獲得陜西省高??茖W技術獎一等獎(第1完成人)1項,陜西省人才計劃項目4項。在Angew Chem. Int. Ed.、Advanced Materials、Advanced Functional Materials、Advanced Science、Nano-Micro Letters、Carbon Energy、Matter、Journal of Materials Chemistry A、Energy & Environmental Materials、Chemical Engineering Journal等國際期刊上發表SCI論文50余篇,其中受邀撰寫綜述6篇,高被引論文7篇,熱點論文2篇。授權國家發明專利10余件,其中4件實現企業轉化。曾受邀請在國內外學術會議上作報告20余次,媒體轉載相關研究成果20余次。組織學生參加“挑戰杯”課外學術科技競賽獲得省級二等獎2項、三等獎1項,獲得陜西省第六屆研究生創新成果展省級一等獎1項,省級創新基金1項;培養研究生獲得“優秀畢業生”、“優秀碩士畢業論文”、“國家獎學金”、“研究生高水平科研成果獎勵”等。
(核稿:黃文歡 編輯:王舒婷)